Professeur: IDRISSI Abdessamad

Calcul Intégral

(cours) 2^{ère} Année Bac Sc Exp

\\$Intégration d'une fonction continue sur un segment

🖎 Définition :

Soit f une fonction continue sur un intervalle I, F une primitive de f sur I, a et b deux éléments de I. Le nombre réel F(b)-F(a) est appelé l'intégrale de a à b de la fonction

$$f$$
 et se note :
$$\int_a^b f(x)dx = \left[F(x)\right]_a^b = F(b) - F(a).$$

🖎 Remarque:

Dans l'écriture $\int_a^b f(x)dx$, On peut remplacer la variable x par n'importe quelle autre.

(On dit que x est une variable muette), c'est-à-dire : $\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(\theta)d\theta = ...$

Propriété :

$$\int_a^b f(x)dx = -\int_b^a f(x)dx \qquad ;; \qquad \int_a^a f(x)dx = 0.$$

%Relation de chasles - linéarité de l'intégrale :

Relation de chasles :

Soit f une fonction continue sur un intervalle [a,c], et $b \in [a,c]$.

On
$$a: \int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$$
.

🖎 Linéarité :

Soit f et g deux fonctions continues sur un intervalle [a,b], et $(\alpha,\beta) \in \mathbb{R}^2$.

On
$$a: \int_a^b (f+g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$
 Et $\int_a^b \alpha \times f(x) dx = \alpha \times \int_a^b f(x) dx$
$$\int_a^b \left[\alpha.f(x) + \beta.g(x)\right] dx = \alpha.\int_a^b f(x) dx + \beta.\int_a^b g(x) dx.$$

Intégration par Parties :

Soit u et v deux fonctions dérivables sur un intervalle I telles que u' et v' sont continues sur un intervalle I. Soit a et b deux éléments de I.

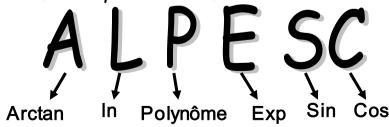
On
$$a: \int_a^b u'(x) \times v(x) dx = \left[u(x) \times v(x) \right]_a^b - \int_a^b u(x) \times v'(x) dx$$
.

Cette formule est appelée formule de l'intégration par parties.

🖎 Exemple :

En utilisant une intégration par parties ; Calculer $I = \int_1^e x \times \ln(x) dx$.

Pour déterminer la fonction primitive et la fonction dérivée en utilise la méthode suivante :



La première fonction dans ALPESC est une fonction primitive et la deuxième est une fonction dérivé.

Donc : On pose :
$$\begin{cases} u(x) = \ln x \\ v'(x) = x \end{cases} \qquad donc : \begin{cases} u'(x) = \frac{1}{x} \\ v(x) = \frac{1}{2}x^2 \end{cases}$$

U et v sont dérivable sur igl[1;eigr] , et u' et v' sont continues sur l'intervalle igl[1;eigr] , d'après la propriété de l'intégration par parties on a :

$$I = \int_{1}^{e} x \times \ln(x) dx = \left[\frac{1}{2} x^{2} \times \ln x \right]_{1}^{e} - \int_{1}^{e} \left(\frac{1}{2} x^{2} \times \frac{1}{x} \right) dx = \left[\frac{1}{2} x^{2} \times \ln x \right]_{1}^{e} - \frac{1}{2} \int_{1}^{e} x dx$$

$$I = \left[\frac{1}{2} x^{2} \times \ln x \right]_{1}^{e} - \frac{1}{2} \left[\frac{1}{2} x^{2} \right]_{1}^{e} = \left[\frac{1}{2} x^{2} \times \ln x - \frac{1}{4} x^{2} \right]_{1}^{e} = \left(\frac{e^{2}}{2} \ln e - \frac{e^{2}}{4} \right) - \left(\frac{1}{2} \ln 1 - \frac{1}{4} \right) = \frac{e^{2} + 1}{4}$$
Done: $I = \frac{e^{2} + 1}{4}$

Donc : $I = \frac{e^2 + 1}{4}$

Valeur movenne :

Soit f une fonction continue sur un intervalle I. Soit a et b deux éléments de I tels que $a \prec b$.

- Le nombre réel $m = \frac{1}{b-a} \int_a^b f(x) dx$ est appelé la valeur moyenne de f sur [a,b].
- Il existe un réel c appartenant à [a,b] tel que : $\frac{f(c) = \frac{1}{b-a} \int_a^b f(x) dx}{c} .$

Section Calcul d'aires :

Propriété 1 :

Soit f une fonction définie et continue sur un intervalle [a,b] . Soit (\mathscr{C}_t) sa courbe représentative dans le plan muni d'un repère orthogonal $\left(O, \vec{i}, \vec{j}\right)$.

rightarrow L'aire de la partie du plan délimitée par la courbe $\left(\mathscr{C}_{_{\!f}}
ight)$, l'axe des abscisses et les droites d'équations : x = a et x = b . Est le nombre réel $S = \left(\int_a^b |f(x)| dx\right) u.a$.

Propriété 2 :

Soit f et g deux fonctions continues sur un intervalle $\left[a,b
ight]$. Et $\left(\mathscr{C}_{f}
ight)$ et $\left(\mathscr{C}_{g}
ight)$ sont les courbe représentatives de f et g dans le plan muni d'un repère orthogonal $\left(O, \vec{i}, \vec{j}\right)$.

rightarrow L'aire de la partie du plan délimitée par les courbes $\left(\mathscr{C}_{\!{}_{\!f}}
ight)$ et $\left(\mathscr{C}_{\!{}_{\!g}}
ight)$, et les droites d'équations : x = a et x = b . Est le nombre réel $S = \left(\int_a^b \left| f(x) - g(x) \right| dx\right) u.a$.

Calcul des volumes :

L'espace est rapporté à un repère orthogonal $\left(O, \vec{i}, \vec{j}, \vec{k}
ight)$.

Soit f une fonction continue sur un intervalle [a,b].

autour de l'axe des abscisses : Est $V = \int_a^b \pi (f(x))^2 dx u.v$.

u.a: est l'unité d'aire $(u.a = \|\vec{i}\| \times \|\vec{j}\|)$ et u.v: est l'unité de volume $(u.v = \|\vec{i}\| \times \|\vec{j}\| \times \|\vec{k}\|)$.